Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation.
نویسندگان
چکیده
Classical swine fever (CSF) is a severe hemorrhagic disease of swine caused by the pestivirus CSF virus (CSFV). Amino acid exchanges or deletions introduced by site-directed mutagenesis into the putative active site of the RNase residing in the glycoprotein E(rns) of CSFV abolished the enzymatic activity of this protein, as demonstrated with an RNase test suitable for detection of the enzymatic activity in crude cell extracts. Incorporation of the altered sequences into an infectious CSFV clone resulted in recovery of viable viruses upon RNA transfection, except for a variant displaying a deletion of the histidine codon at position 297 of the long open reading frame. These RNase-negative virus mutants displayed growth characteristics in tissue culture that were undistinguishable from wild-type virus and were stable for at least seven passages. In contrast to animals inoculated with an RNase-positive control virus, infection of piglets with an RNase-negative mutant containing a deletion of the histidine codon 346 of the open reading frame did not lead to CSF. Neither fever nor extended viremia could be detected. Animals infected with this mutant did not show decrease of peripheral B cells, a characteristic feature of CSF in swine. Animal experiments with four other mutants with either exchanges of codons 297 or 346 or double exchanges of both codons 297 and 346 showed that all these RNase-negative mutants were attenuated. All viruses with mutations affecting codon 346 were completely apathogenic, whereas those containing only changes of codon 297 consistently induced clinical symptoms for several days, followed by sudden recovery. Analyses of reisolated viruses gave no indication for the presence of revertants in the infected animals.
منابع مشابه
Mutation of cysteine 171 of pestivirus E rns RNase prevents homodimer formation and leads to attenuation of classical swine fever virus.
Pestiviruses represent important pathogens of farm animals that have evolved unique strategies and functions to stay within their host populations. E(rns), a structural glycoprotein of pestiviruses, exhibits RNase activity and represents a virulence factor of the viruses. E(rns) forms disulfide linked homodimers that are found in virions and virus-infected cells. Mutation or deletion of cystein...
متن کاملInactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus.
Envelope glycoprotein E(rns) of classical swine fever virus (CSFV) has been shown to contain RNase activity and is involved in virus infection. Two short regions of amino acids in the sequence of E(rns) are responsible for RNase activity. In both regions, histidine residues appear to be essential for catalysis. They were replaced by lysine residues to inactivate the RNase activity. The mutated ...
متن کاملClassical swine fever virus glycoprotein E rns is an endoribonuclease with an unusual base specificity.
The glycoprotein E(rns) of pestiviruses is a virion-associated and -secreted RNase that is involved in virulence. The requirements at the cleavage site in heteropolymeric RNA substrates were studied for E(rns). Limited digestion of heteropolymeric RNA substrates indicated a cleavage 5' of uridine residues irrespective of the preceding nucleotide (Np/U). To further study specificity radiolabeled...
متن کاملClassical swine fever virus E(rns) deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines.
An SK6 cell line (SK6c26) which constitutively expressed the glycoprotein E(rns) of classical swine fever virus (CSFV) was used to rescue CSFV E(rns) deletion mutants based on the infectious copy of CSFV strain C. The biochemical properties of E(rns) from this cell line were indistinguishable from those of CSFV E(rns). Two E(rns) deletion mutants were constructed, virus Flc23 and virus Flc22. V...
متن کاملEnzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein E(rns) for serologic diagnosis of pestivirus infections in swine.
Peptides deduced from the C-terminal end (residues 191 to 227) of pestivirus envelope protein E(rns) were used to develop enzyme-linked immunosorbent assays (ELISAs) to measure specifically antibodies against different types of pestiviruses. The choice of the peptide was based on the modular structure of the E(rns) protein, and the peptide was selected for its probable independent folding and g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 73 12 شماره
صفحات -
تاریخ انتشار 1999